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Light and sound emissions due to nonlinear fluctuations of an electron-plasma field are investigated from 
the viewpoint of interaction phenomena. The method of solution is similar to that of a forced-oscillation 
problem, where the equivalent force term couples the different order of the field amplitudes, and is also 
responsible for the energy conversion from transverse field to longitudinal and inversely. For the general 
solution, an wth-order perturbation theory is initiated, based on the nonlinear equations of the plasma field, 
and a formal solution for the nth. order is derived. Analysis is performed for the lowest order nonlinear 
fluctuations; radiation field intensities and scattering cross sections for all possible types of interactions are 
obtained. Furthermore, it is shown that the scattered waves radiate with combination frequencies. 

I. INTRODUCTION 

IN recent years a considerable amount of attention 
has been given to the radiation phenomena from 

plasma fields.1"3 The radiation by a large amplitude 
oscillation from a cold plasma,4 radio emission from 
nonuniform plasmas,5 scattering radiation due to the 
propagation of electromagnetic waves in a plasma 
medium6 have been investigated. Methods of approach 
to the study of the phenomena have been varied. For 
example, the problem of the propagation of electro
magnetic waves in a plasma, where there existed a com
bination scattering of these waves by density variations, 
was treated by a technique which considered the varia-
ions of a conductivity tensor operator.6 The scattering 
of electromagnetic waves from randomly distributed 
free electrons was investigated by Gordon,7 and the sub
ject has been separately treated by a number of 
authors.8"10 

In most of these works, it has been assumed that 
electromagnetic or acoustical type radiations arise when 
incident waves are propagated in a medium. Alterna
tively, a varying current may be injected into the 
medium to generate such radiations.11 Once the free 
propagation of possible waves is completely understood, 
it is usually a stiaightforward process to construct a 
model wherein the source can be either an incident 
wave or an injected varying current. In the present 

1 Continuum theory of waves and radiation in a plasma and dis
cussed by M. H. Cohen [see Phys. Rev. 123, 711 (1961); 126, 
389 (1962)3, and the problem of density fluctuations in plasma 
has been investigated by E. E. Salpeter [see Phvs. Rev. 120, 
1528 (1960); 122, 1663 (1961) and J. Geophys. Res. 68, 1321-
1333 (1963)]. 

2 V. L. Ginzburg and V. V. Zhelezniakov, Soviet Astron. A. J. 
2, 653-668 (1958). 

3 Radiation and Waves in Plasmas, edited by M. Mitchner 
(Stanford University Press, Stanford, California, 1961). 

4 D. A. Tidman and G. H. Weiss, Phys. Fluids 4, 866 (1961). 
6 D. A. Tidman and G. H. Weiss, Phys. Fluids 4, 703 (1961). 
6 A. I. Akhiezer, J. G. Prokhda, and A. G. Sitenko, Soviet 

Phys.—JETP 6, 576 (1957). 
7 W. E. Gordon, Proc. Inst. Radio. Engrs. 46, 1824 (1958). 
8 J. P. Dougherty and D. T. Farley, Proc. Roy, Soc. (London) 

A259, 79 (1960). 
• J . A. Fejer, Can. J. Phys. 38, 1114 (1960). 
10 M. H. Cohen, J. Geophys. Res. 67, 2729 (1962). 
n R. Karplus, Phys. Fluids 3, 800 (1960). 
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work, however, an entirely new argument will be de
veloped, in which it will be shown that light and sound 
types of emissions can result from the self-interactions 
of possible plasma waves in the plasma field which can 
support large density fluctuations. Consequently, these 
interacting waves play the role of an equivalent source 
term for the generation of radiating waves in higher 
orders. 

The field under study is an unbounded, collisionless, 
isotropic electron plasma, described by a set of nonlinear 
hydrodynamic and Maxwell equations where no ex
ternal electric and magnetic fields are assumed. Since 
it is not necessary to directly solve this set of nonlinear 
equations, a perturbation method of nth order is initi
ated, and a systematic solution for multipole acoustical 
and electromagnetic radiations (from plasma fluctua
tions) is developed. The most essential features of the 
general nonlinear problem will be clearly revealed by 
means of quite simple mathematics, involving only 
second-order perturbation calculations. First-order ap
proximation of the field equations defines the linear 
theory in which longitudinal and transverse waves 
propagate independently. It is in these second-order 
terms that coupling of plasma waves occurs. Conse
quently, if longitudinal and transverse waves propagate 
simultaneously, in the second order they will interact. 
It can be assumed that coupling of various plasma waves 
is due to the density inhomogeneities, and the inhomo-
geneity plays the role of conversion mechanism of 
energy from a longitudinal wave field to a transverse 
wave field, and inversely. It is shown that in the second 
order, the partial differential equation for the electric 
field vector will become an inhomogeneous one, of 
which the inhomogeneous part consists of the fiist-
order variables. Generally, for an wth-order equation of 
the electric field vector, the source (inhomogeneous 
part) consists of (n—l)th and lesser order terms. The 
source term couples not only the different orders of the 
field amplitudes, but is also responsible for the coupling 
of longitudinal and transverse plasma wave fields. The 
basic problem is to determine the lowest order nonlinear 
amplitudes (second order) which can be expressed by 
quantities calculated from the linear (first-order) equa-
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tions. Similarly, higher order field variables may be 
obtained by terms of lesser orders.12 

Light- and sound-type energy radiation intensities 
will be defined by one general expression which will be 
proportional to the second power of the volume of 
interaction, fourth power of frequency, and inversely 
proportional to the equilibrium density and the fifth 
power of the characteristic radiation velocity. An ad
ditional term will enter into the intensity expression 
of the radiating longitudinal wave field. 

Depending on the nature of scattered waves, the 
characteristic radiation velocity and frequency terms 
will be different. For instance, in sound-type radiation, 
the characteristic velocity is adiabatic sound velocity; 
in light-type radiation, it is the velocity of light. A 
combination of interacting wave frequencies with the 
electron plasma frequency will appear in light-type 
intensity expressions, whereas sound-type radiation in
tensity expressions will contain a combination of the 
two interacting wave frequencies as well as the com
bination frequencies of light type. 

In Sec. II, we discuss the plasma equations and give 
a general solution for the ^th-order equation of the 
electric field vector. Section III contains the derivation 
and a discussion of the generalized Poynting theorem. 
In Sec. IV, a description of the method used in this 
investigation is given, and the radiating field com
ponents are obtained. Radiation intensities and scat
tering cross sections are derived and analyzed in Sec. V. 
Finally, a summary of results is given in Sec. VI. 

II. PLASMA EQUATIONS 

The plasma equations are obtained by applying the 
combined sets of hydrodynamic and Maxwellian equa
tions to a completely ionized polarizable electron fluid. 
Equations are assumed to be valid for a system of 
charged particles which have electrical neutrality in 
the mean and sufficiently high-particle density to justify 
the passage from a discrete set of particles to a fluid 
medium. The plasma field is assumed to vary slowly 
enough in space and time for Lorentz equations to be 
replaced by Maxwell equations. Furthermore, the ions 
are considered to be fixed in space, so that their only 
effect is to electrically neutralize the plasma. A funda
mental property of the plasma described here is that it 
exhibits a "screening" property. By screening, we mean 
that the plasma has the property of cancelling any ex
ternally imposed field and reducing it to zero for a 
distance of the order of Debye length. If the usual 
averaging process is carried out to replace the Lorentz 
equations by Maxwell equations (that is to say that the 
averaging region has its mean dimensions larger than 
Debye length), the plasma may be represented as an 

12 A similar method is used by D. Montgomery to study non
linear, time-dependent plasma oscillations with Boltzman's equa
tion. See D. Montgomery, Phys. Rev. 123, 1077 (1961). See also, 
D. Montgomery and D. A. Tidman, Phys. Fluids 7, 242 (1964). 

electrically neutral polarizable fluid. Therefore, the 
plasma model to be investigated assumes electrical 
neutrality in the mean, hydrodynamic continuity of the 
medium, and validity of Maxwell's field equations. 
Electrical neutrality implies that we cannot consider 
distances smaller than Debye length, and we place 
limitations on the particle density, their velocities, and 
the rapidity with which the fields vary in time and 
space. We should have these assumptions in mind when 
the results are elaborated. 

We are thus considering a one-component, collision-
less, isotropic, electron fluid; the parameters associated 
with ions do not occur in the equations. The governing 
equations are : 

(pW+p)Z(du/df)+u-Wu] 

+V^+(e /m)(pW+ P ) [E+( lA)uxH] = 0, (1) 

Vp=v2Vp, (2) 

cVxE=-dE/dt, (3) 

cV x H = -4a(e/m)(P(0)+P)U+ (dE/dt), (4) 

V.E=-47r(e/w)p, (5) 

where the space (r) and time (t) variations of the elec
tron fluid density, electron fluid pressure, electron fluid 
velocity, electric field, and magnetic field vectors are 
represented by p, p, u, E, and H, respectively. The five 
variables are assumed to have large amplitudes in the 
oscillations of the electron plasma. No drift velocities 
are assumed. p(0) stands for the constant equilibrium 
density of electrons; v is the adiabatic sound velocity 
in plasma medium; c is the velocity of light; e and m 
are the charge and the mass of electron, respectively; 
[_{e/m)p] is the varying charge density. The above 
equations are self-consistent for the five field variables, 
and the equation of conservation of charge density 
which is missing in the equations above can be derived 
from Eqs. (4) and (5). 

By manipulations in Eqs. (1) to (5), we obtain the 
following equation : 

1 < 3 2 E V2 0>2 

V X V X E + - v ( V - E ) + — E 
c2 dt2 c2 c2 

\-w{e/m)r dp e / e \ 
= u pE-pWfu-ViH u x H ) 

c2 L dt m \ mc I 

-p(u-Vu+—UXHY|, (6) 
\ mc / J 

where a)e~ (^irpm)ll2(e/m) is the plasma Langmuir 
frequency. It is to be noted that p(0) represents a uni
form background of charge and is assumed immobile. 
The field variables can be represented to arbitrarily 
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high orders as6 

P(t,t) = i: p«»>(r,0, p(tf)=£ pM(t,t), 

u ( r , l ) = I u « ( r , ( ) , (7) 

E(r,0=E EW(r,0, H(r,0 = Z H<"<(r,*), 
n—1 n = l 

where it is no loss of generality to assume that the 
amplitudes of the variables will be decreasing as the 
orders of perturbation are increasing, i.e., p(1)>p(2) 

> p < 3 > - - - . 
Using vector identities, for each order of perturbation 

we are able to write from Eq. (6) 

r^--(—+«-t)]E(n)-(i-^y(v-Ec»>)=s<»>, (8) 
where the inhomogeneous part S(n) is composed of 
terms up to order (n— 1) only, and reads 

S<»> = 
4:T(e/m) I [«~i/ dpU) e \ n~i/ e \ 

E ( " U ^ - ^ 1 pOl^in-j) \+p(0) £ / UU). Vu(«-j)-l -U(i) xH<n-» ) 
I j-i \ dt m / y=i \ mc I 

n—'l n—j—1 / e \ } 

y-i «=i \ mc I \ 
(9) 

for n> 1, 

S ^ = 0, for n = l , 

so that Eq. (8) is homogeneous for the first order. This shows that a fluctuating plasma generates the same varia
tions as those produced in a linearly oscillating medium by a system of externally applied forces, represented by 
S(n). This treatment of the radiation, as generated by the plasma fluid in the manner of a forced oscillation, is 
suitable since not only the mathematics involved become straightforward, but the interaction picture will be 
automatically accounted for in the equivalent applied force system S(n). 

Furthermore, relationships between plasma field variables are needed. Substituting Eqs. (7) into Eqs. (1) and 
(5), the following relationships between plasma variables will be in order: 

, ( n ) = 

1 V2 dWn) 

4:ir(e/m) Air(e/m) dt 

du(w) 1 e n-i/ 1 du(;> e fe/m) \ 
.Vp(n) E < n ) _ £ ( u ( n - i ) . V u ( y ) + _ _ p ( n - i ) 1 „u ? , (n- i ) x H r <i )_ | — p O ^ E O " ) J 

dt n<0> j=l \ ^(0) dt mc „(0) 

1 w-2 n-y-i/ e \ 
- — £ ptf> X) ( u < 8 > - V u ^ ^ H u r

w x H ^ - ^ M (10) 

where subscripts L and T are used for longitudinal (irro-
tational) and transverse (divergenceless) parts of the 
vector field. 

By taking the Fourier transform of Eq. (8) with 
respect to time, we obtain 

(V2+F2)EW^-(1-F2AL2)V(V-EW<->) = SW^, (11) 

where 

ated with a region of the field wherein the equivalent 
source is assumed to be located. Consider, therefore, 
that Ew

(n)(r) is produced by Sw
(w)(r). We therefore 

introduce the dyadic r(r,r ') defined by13 

(V*+kT2)r(tJ)-(l-kT2/kL2)VV-r(r,r') 
= S«(r-rO, (12) 

where g is the unit dyadic, and 5(r—r') is defined by 

( w 2 v l / 2 / w 2 v l / 2 r 

1 ~) , and **=(«/*)( 1 j) I 8 ( r - r > > = l , $(r~r') = 0 | r - r ' | ^ 0 , (13) 
are the propagation constants for transverse and longi
tudinal wave fields, respectively, where the subscript co 
refers to the Fourier-transformed component of the 
field variables. 

We shall define the tensor Green's functions assoei-

in which integration is to be extended over a region en
closing the point r'. The dyadic Green's function for 

13 Solutions to similar vector wave equations are given by P. M. 
Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-
Hill Book Company, Inc., New York, 1953), and by H. Levine 
and J. Schwinger, Com. Pure Appl. Math. 3, 355 (1950). 
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an unbounded medium, defined by Eq. (12), can be 
constructed by imposing the requirement that all of its 
components vanish at infinity. If the source function is 
known, the electric field vector is given by 

E„<»>(r)= ~ f r(r,r /)-S„(»>(r ,W, (14) 

where the integral is taken over the volume in which 
the source term is located. The dyadic Green's function 
for such an unbounded medium can be expressed by 

r(r , rO= (^A r 2)rL(r,r,c)+r r(r,r ' ,co), 

1 e x p { ^ | r - r ' | } 
r £ ( r , 0 = — V V ' — — — , (15) 

kL2 4TT| r—r'l 

( 1 \exi){ikT\r—r'\} 
$ _ v v / ) _ 

F 2 / 47r | r - r ' | 

where rL(r,r') and r>(r,r') stand for longitudinal and 
transverse wave fields; r and r' represent the vectors 
from the origin to the observation point and point of 
source, respectively. r' lies in the inside of the volume 
of interaction, whereas r extends to the outside of the 
volume of interaction. 

The field vector Ew
(n)(r) of any arbitrary order can 

be evaluated by computing the lower orders first. We 
start with the lowest order (n=l), in which the vector 
wave equation (8) is homogeneous and its solution is 
known. The next and higher orders are solvable, since 
the inhomogeneous part of the vector wave equation 
will contain terms of lower orders. Time domain solu
tions will be obtained by simply taking the inverse 
Fourier transform of the field vector Ew

(n)(r). 

III. GENERALIZED POYNTING THEOREM 

In classical electromagnetic theory, the Poynting 
vector represents the amount of energy which crosses 
per unit area per second, whose normal is oriented in 
the direction of the Poynting vector. This definition is 
generally used for the transverse electromagnetic field. 
Possible ambiguities or arbitrariness in the interpreta
tion of the theorem can be eliminated by applying the 
definition cautiously, such as applying averages over 
small but finite regions of space and time. 

The classical Poynting theorem needs to be general
ized for the present compressible plasma model, so that 
the total flow of plasma energy in radial direction 
through a closed surface will be properly defined. The 
Poynting vector for this case will include a longitudinal 
component added to its known transverse component. 
Similar to classical procedure, from Eqs. (4) and (5), 
we write: 

(c \ 1 dE 1 dH 
V-(— E x H ) » — E —H E . J U (16) 

\ 4 T / 4TT dt 4 T dt 

where Jcon=-- (e/m)(pm+p)u represents the convec
tion current due to the motions of electrons. In ordinary 
electromagnetic theory, the last term is interpreted as 
the one which expresses power expended by the con-
vective flow of charges against the impressed field 
vector E. If all material bodies in the field were abso
lutely rigid, no possible transformation of electromag
netic energy into the longitudinal wave energy would 
occur. Since the plasma medium is not assumed to be 
rigid but compressible, energy conversion from trans
verse waves, and inversely, will be effective. Conse
quently, a flow of electromagnetic energy across the 
boundary will be accompanied by the energy flow due 
to the longitudinal field. 

To define this new term, we consult the governing 
Eqs. (1) to (5). After multiplying both sides of Eq. (1) 
by u and using necessary vector identities, the following 
expression is obtained: 

E.JCon-(p (0 )+p)u-auM+(pW+p)u-[(u-V)u] 
-V-(pu)+pV-u. (17) 

I t is to be noted that the velocity vector u contains a 
longitudinal component as well as a transverse one, so 
that the two waves are coupled. 

It is due to the term E • Jcon that the two directional 
energy conversions (from transverse waves to longi
tudinal waves, and inversely) can easily be explained. 
Combining Eq. (17) with (16), the following expression 
will be in order: 

vY—ExH+/>uJ 

1 dE 1 <9H du 
= E — H + ( p ( o ) + p ) u — 

4TT dt 4TT dt dt 

+ (p<0)+p)u-[(u.V)u]+#V.u, (18) 

where the flows of transverse and longitudinal energy 
appear under the divergence operation on the left side. 
The terms including velocity vector u, on the right-
hand side, are significant to the description of the plasma 
flow, such as turbulence. Indeed (pm-\-p)u-du/dt is 
comparable to Reynold stresses of the classical hydro-
dynamic theory, which make possible direct transfer 
of momentum components by velocity components. 
They are responsible for the momentum transport. 

These terms can be interpreted in a similar manner 
here. Since density variable contains the static part 
p(0), pi0) u-du/dt will be the rate of change of lower 
order Reynold stresses, whereas the rate of change of 
higher order Reynold stresses will be due to pu-du/dL 

The generalized expressions of the Poynting vector 
for higher order perturbations are written as 

P<»>:=£; (—Er^XH^—>*+p<*>nL<—• A , (19) 



L I G H T A N D S O U N D E M I S S I O N S Am 

where the asterisk denotes the complex conjugate. The 
physical importance of this general form of the Poynting 
vector lies in the fact that aside from expressing the 
energy flow resulting from the same orders of the dif
ferent components, the energy flow resulting from 
coupling between different orders of the field variables 
is also included. However, this most general expression 
will be used in rather a simplified form. Contributions 
from coupled terms between different orders will dis
appear when time averages are taken, since cross terms 
will contain periodic time multipliers. 

IV. DESCRIPTION OF THE METHOD USED AND 
RADIATING FIELD COMPONENTS 

We assume that fluctuating electron fluid occupies a 
limited part of a very large volume of the plasma field, 
of which the remainder oscillates with small ampli
tudes. Fluctuations of higher order amplitudes can be 
looked upon as resulting from the interactions of 
linearly oscillating plasma waves. We shall develop a 
systematic solution by keeping this model in mind. 

The equations describing the higher order fluctua
tions will be constructed from the field variables of the 
linear oscillations. One can assume that an element of 
the plasma fluid, subjected to the equivalent force 
term, will suffer both compressional and rotational de
formations to generate light and sound types of radia
tions, The linearly oscillating field would experience a 
pressure field, varying with small amplitude from a 
simple hydrostatic pressure field. Thus the variations 
of the pressure field would be proportional to the varia
tions in density; the constant of proportionality will be 
the square of the adiabatic sound velocity v2. 

Consistent with the method of approach described 
above, we shall start with the solution of the homo
geneous equation. Separating longitudinal and trans
verse wave fields, from Eq. (8), we write 

r^--Y—+«. 2 )1ET< 1> = 0, (20) 

[v,-^+"-)]E'"'=o' <a) 

which are homogeneous Klein-Gordon type differential 
equations. The plane waves which may exist in the 
plasma are determined by assuming solutions to the 
above equations of the form v cos(a>2— K«r). The prop
agation vector v. is k(o)/v)£l — (coe

2/co2)]l/2 f ° r longi
tudinal waves and k(co/c)[\ — (a>c

2/w
2)]1/2 for transverse 

waves; k is a unit vector in the direction of propagation 
and r is the vector to the point of observation. v=voP 
is either parallel or perpendicular to the propagation 
vector K; that is, the primary wave is either longi
tudinal or transverse. 

In these first-order perturbation solutions, one solu
tion corresponds to a longitudinal wave which has no 
magnetic field associated with it the remaining solutions 

correspond to two transverse waves of perpendicular 
polarization which have no density variations associ
ated with them. 

We now turn our attention to the problem of finding 
the second-order field components. To analyze the sub
ject clearly and relate it to emissions of sound and light 
as they are produced by an externally applied force 
field, we define the term S(2)(r,/) as the source term 
per-unit-volume, which will be simply written as: 

4vre/tn/ dp ( l ) e 
S W ( r , * ) = — - — ( u < i > — t — E < » 

c2 \ dt m 

ep<°> \ 

+ p ( 0 ) u ( D . V u ( i ) + u ^ X P M . (22) 
mc / 

As mentioned before, this vector source expression 
couples transverse and longitudinal wave fields. 

The medium is assumed to be unbounded, and at 
points far enough from the location of the interaction. 
The radiation field variables will be computed by using 
the far-field approximation. By this approximation, the 
dyadic Green's functions simplify into the following 
forms: 

ri,(r,r',w) = n rn r exp{i(r~ n r- r
f)kL}/4:Tr, (23) 

r r ( r , i > ) = ( 3 - n r i i r ) exp{i(r-nr-r
f)kT}/^r, (24) 

where r is chosen so large that kL\ r— r ' | » l , kT\ r - r ' | 
>̂>1 for all r; and in addition, since | r ' | « | r | we have 
| r — r ' | ~ r — n r « r ' , where n r is the unit vector in the 
direction of r, i.e., n r =r/V. 

The lowest order source term S(2)(r,/) will be com
puted by assuming that two primary plane waves 
(which are solutions of the homogeneous equation) with 
different frequencies and amplitudes are interacting. 
Therefore, we write 

2 

E ( 1 ) ( r , / ) = Z vy c o s ( « i * - K J - r ) , (25) 

which also defines the o ther four field var iables in t he 
first-order pe r tu rba t ion , b y t h e help of re la t ionships 
given in E q . (10). 

Subs t i tu t ing the first-order field var iables in to E q . 
(9), and after some lengthy calculat ions, t he following 
expression is ob t a ined : 

S<2>(iy) 

(e/m) 
= L $&n sin[(co8Tcon)/~- ( K , = F K « ) • r ] , (26) 

C2 aTn 

where a summation rule is adopted. The subscript 
($=F») takes the value of (1+1) , (2+2) , ( 1 - 2 ) , and 
(1+2) , where (1+1) and (2+2) refer to the self-
interactions of the same primary waves; whereas, (1 — 2) 
and (1+2) refer to interactions between the two dif
ferent primary waves. Hereafter, these four different 
modes of S„Tn will be called interaction modes, and it 
will be understood that when s^Fn—1+1, ca^oin reads 
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wi+wi; KJTKB reads K I + K I ; and thus SSTn becomes Si+ i . The four components of S8?n are given by 

I f co e
2 | 

S8qFn = \Vu(ri2n+Vn)-\ [(*?2S* K »)l|2»+ (*72s * £2n)] | =F (1 — 8s
n) 

1 f coe
2 1 

X |l?lr>(*?2«+Vs)H [(*|2n'Ks)l|2S+(*72nX?2S)][ , (27) 

where 

^2*==(^2/aJe2)(vs*Ks)l<:s+V , l?2n=(^2/wc
2)(vw«Kn)Kn+Vn (28) 

Here, s and »indices are used separately with numbers 1 and 2 preceding them. The summation rule is valid again, 
and 8&

n is 1 when s— n, and otherwise zero. I t is furthermore worthwhile to remember that throughout this analysis, 
ccs o)r^>coe is assumed. 

The source term 8(2)(r,£) is determined by the parameters of the primary waves in Eq. (26). By using, now, Eqs. 
(23), (24), and (14) the following expressions of longitudinal and transverse field components can be written: 

E £ » ( r , 0 = i : E w < « ( r , 0 
sTn 

1 e/m /exp{-~i[^n
I 'r~-(co*=Fcon)/]} exp{i[ks^n

Lr— (cos=Fcow)/]} \ 
—; L «8TnL ~ ~ ~ — — - asTn

L-—— — a&n
L*), 

2i V2 sTn \ r T J 
(29) 

E T ( 2 ) ( r , 0 = E E r ^ , ( r , 0 

1 e/m /exp{ — i[k&n
Tr— (cosTcon)/]} exp{i[k&n

Tr— (cosTcow)f]} \ 
= __ £ as^n

T( a s T n
T aszfn

T* ) , (30) 
2i c2 sTn \ r r / 

where the summation rule is used again. When sTn= 1—2, k&n
L reads £i_2L; aaTn1, reads a1_2

1', etc., • * • .Sum
mations are therefore understood to be taken for four different interaction modes. New parameters, which appear 
in Eqs. (29) and (30), are given by the following: 

a**nLtT=- / exp(ijc,:Fn
I"rT/)<fo/ « s T n

L = n r n r - S g T n , 

J Vo 

^8TnL'T=k8^n
L'Tnr— (K8TKn) , OLf?n

T = (3~~ nrllr) • $s^n, 

co8Tcon r a>2 n 1 ' 2 (31) 
k n= L = -

>t € 8 q= n . 

By using the relationships between the various plasma field variables, pressure, longitudinal component of the 
velocity vector, and magnetic field component, the following expressions are obtained: 

Pm(r,t)=i: P*«m(T,t) 

ux ,» ( r ,0= £ u i . T n ( 2 ) ( r , 0= S 
iT» 8xp ( 0 ) «T 

X 

d /exp{ —C^rFn^— (".Taj,,)*]} exp{i[k&n
Lr— (ctfsTcOn)̂ ]} 

^— E n f• a*:»L—( — - — — - - - - — - - — a ^ n L - — — — — — a a T n
L ) , (32) 

ST sTn dr\ r r / 

» (co8=Fcon) W fl2 / 

/exp{-i[^ srFw
Lr- (w8T(0n)Q exp{t[^8^n

L^- (^s^COn)/]} \ 
I _ _ ™ ™ _ a^nL„_. asTn

L* J 

4TT 
H TsTn(exp{[(Ks

:=FKn)r— (tt,Tttn)/]}+exp{iE(K,TK»)r— (w,=F«n)/]}), (33) 
w8TwB 
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H^M=rHy4T(^(r,l). 
sTn 

e/m nrXocsl:n
T d /exp{— i[_ks^n

Tr— {w8T-o)n)t]} exp{i[_ks^n
Tr— (cos=Fcow)f|} \ 

= £ ( asT n
T-\ asT n

T*), (34) 
2c sTn cosTcow dr\ r r / 

where 
T .Tn=&i . i ? i» = F( l -« - n ) ' ? i» f l i . ] -S^ n (« . (35) 

Once the field components are defined, the Poynting vector will be determined according to the rules previously 
adopted. 

P (2 ) is the Poynting vector due to the primary waves. The next nonvanishing component of the Poynting vector 
will be P ( 4 ) , since P ( 3 ) vanishes when time averages are taken. Indicating time averages by ( )ty due to the lowest 
order nonlinear terms, the Poynting vector reads: 

p<4>= FT(»+PLM = Re((c/8Tr)ET
(2) x H r

( 2 O r f R e ( ^ ( 2 W 2 ) % (36) 

where the first and second terms on the right-hand side represent the transverse and longitudinal parts respectively. 
By using Eqs. (30) to (34), the two components of the Poynting vector are obtained: 

P r ^ ( 4 ) = Re<te/&r)Er-Tn<» x I W 2 ) * > H - ^ T ^ / X ( n r x f t s T / ) \a8Tn
TasTn

T\ (37) 
L167rcV2 J 

r (e/ni)2/u8Tun\
2 "1 r 1 nr*a&n

L ~| 
PLa^ = Re(±psTnWuLs^)==\ ) esTn*sTn

L \a8^n
LasTn

L*+\ T s±n 
L167TZ)V2\ C0e / J L l6x f 2 (cO,=FcOn) J 

X{[(**=»r) {r)as^n
L+^a8Tn

L"] cos(xsTn
L-T)-[^asTn

L--^a8Tn
L{k8Tnr)2 s i n ^ T r ^ r ) } . (38) 

The left superscripts (r) and (i) refer to the real and 
imaginary parts of the integral variables attached. 
Scattering radiations for longitudinal and transverse 
wave fields will be realized if 2CL a n d %T expressions 
become identical to zero. That is to say, if such an n r 

direction is defined, a8^n
T, as^n

T*, as^n
L, asTnL*, and 

<r>as=Fn
L will each become proportional to the volume 

of interaction (Fo); whereas {i)a8?pnL and sm(%STnL'X) 
terms will vanish from the expressions given above. 
For other values of n r, the amplitudes of waves will be 
oscillating; for these directions, waves do not scatter 
but behave as diffracted waves. 

As will be seen later, the directional condition for 
scattering described above is a necessary, but not a 
sufficient condition for scattering radiation. I t only 
informs us if such a scattering occurs in a definite direc
tion. Relative position of the propagation vectors of 
the interacting primary waves, or in the case of polarized 
primary waves, the relative position of polarization 
planes are other important deciding factors on the 
occurrence of such scatterings. 

V. INTENSITY ANALYSIS OF LIGHT AND SOUND 
FIELDS AND SCATTERING CROSS SECTIONS 

The significant radiation quantities which, under cer
tain conditions, can be estimated by human eye and 
ear, are the intensities of light and sound type radia
tions at any point of the field and their frequency spec-
trums. Being more descriptive, we named acoustical and 
optical (or electromagnetic) type radiations as sound-
and light-type radiations which are to be used more 

cautiously otherwise. As it can be seen later, the in
tensity expressions of sound and light emissions at any 
point will contain either adiabatic sound velocity or the 
velocity of light (or a combination of both velocities) 
to the fifth power in their denominators. We shall call 
pure sound and pure light those radiations. where the 
intensity expressions contain only the fifth power of the 
adiabatic sound velocity and light velocity, respec
tively. Furthermore, these velocities are taken as the 
characteristic velocities of the associated radiations. 
Intermediate radiations between the pure radiations 
will contain the two velocities, such as third power of 
the light velocity and the second power of sound ve
locity. Visibility and audibility of these radiations are 
problems of a different type, and will not be discussed 
here. 

Before we formulate the radiation intensities, sound 
and light radiation energy densities will be derived from 
the Poynting vector expressions. This will be done by 
taking the components of the time-averaged Poynting 
vectors in the nr direction, and multiplying them by 
r2dti. Thus, the time averaged energy densities per solid 
angle dQ, are written (for each interaction mode): 

dPTSTnW = nr.FT^nMr2dQ, (39) 

dPLsTnW = n r .P i s=Fn ( 4WQ. (40) 

To obtain the total sound and light power outputs, one 
must integrate these expressions of over a sphere. 

Intensities of energy flux per unit solid angle at a 
point of the plasma field are obtained by dividing both 
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sides of E q s . (39) a n d (40) b y dQ: 

V0
2 {e/mf 

^r«T»= es^ntir'\^&sTnTX(nrX0LsTnT)'], (41) 
16TT 

Fo2 (e/m)2 (co3=Fcon)
2 

16TT v3 o) 

V0 

es^n(nr'aSTnL)2 

e e8zfn(nr-<xSTnL)(nr-Tsl:v), (42) 
.... 

where scat ter ing resonance condit ions %8TnL,T—0 are 
assumed to be satisfied. 

Unlike the in tens i ty expression of t ransverse field, 
the intensity of the longitudinal field contains an addi
tional term, whose appearance is due to the existence 
of first-order terms in the velocity vector u(2)(r,£). 
When the pressure terms p(2)(t,t) are multiplied by the 
velocity vector u(2)(r,£), cross multiplication between 
first- and second-order terms yields this additional 

term. In our subsequent discussions, it will be seen that 
these radiations are of quadrupole type, within the 
limits of second-order perturbations. 

The scattered intensity expressions refer only to the 
energy which actually escapes from the fluctuations as 
light and sound. However, depending on the type of the 
interacting waves, there will be differences in the in
tensities of emitted light and sound. Here, we have 
three different possible combinations of interacting 
waves, namely, longitudinal-longitudinal, transverse-
transverse, and longitudinal-transveise types. 

Case I. Two Longitudinal Primary Waves 

For this case, the general expressions for the longi
tudinal and transverse components of intensity undergo 
certain simplifications. Since the fluctuating force term 
contains only waves of a longitudinal type, cross product 
terms vanish in source terms, and the intensity expres
sions take the following forms: 

FoW(cos
2—ue

2)/v 

(8x)4
P 

(0) r 5 0"(1-' )-I«A=.i'o.*vo»,| SsTK("> I2 s i r f W " ) , (43) 

(LL) = 

7«8(«.*-«.s)(W.=F«„)! 

2(87r)y%6 

^o(ws
2—cce

2)r 

2(8;r)8p (0)„3 
( l -e s

2 ) - 1 ( l -€n 2 ) - 1 e s T ^o 8
2 » 'on 2 |S s T l l <" ' | |T s ± n ("> |cos^ T B <">cos^ T „(">, (44) 

where 

(45) 
/ con

2\ coc
2 AoJ-coA 1 ' 2 r / " A "• / A V - w A ' 1 1 

ll+ \ + ( - 1 — 1 ) («.-«,.)e.=F(i-«.-) ( 1 + - ) — i - T — J +(*••«•)<•' 

f r / W n W \ /Un2-d>e2\112 1 f/^s CO2 \ / W ^ w A 1 ' 2 l 1 
T*=«(LL)= ( ) - ( I (*.•*») k = F ( l - 8 . » ) ( ~(*.-Sn) k • (46) 

l L \ c O » a?nC0g/ \O)s
2 — C0e

2/ J LAcOrj, COsC0^/ \ C0S
2 — C0 e

2 / J ) 

Superscripts refer to the primary waves whereas the subscript defines the type of the radiating wave, and 6LL and 
<£LL are the angles between the scattering direction and S,=Fn

(LL), T«=Fn(LL) source vectors, respectively. I t is to 
be noted that Ss^n

(LL) and Ts^n
(LL) vectors lie in the plane of propagation vectors (KI,K2). 

As a basis for the construction of the type of radiation expressed above, we assumed that the resonance scattering 
conditions are satisfied. These latter conditions deserve further comment. Squaring the terms in the resonance 
conditions %8TnL=0 and 2cs=F»r=0: 

J fts-fn 

| K 8 | 2 - | K „ | 2 ± 2 | K s | | K K | c O S V ^ „ n
( M ) = 0 , 

|K r a |2±2|K s | |K„[cOS^3 . <"> = (), 

(47) 

(48) 

are obtained, respectively. From Eqs. (47) and (48), we conclude that light- and sound-type radiations are uniquely 
defined by the interaction angles $TsTn

{LL) and $LSTJLL)> These angles are different for a given set of plasma 
parameters. 

An important conclusion can be drawn from the expressions above. When the propagation vectors of the inter
acting primary waves are perpendicular to each other, Eq. (47) is never satisfied, since |k,,^n

L\2— | KS |
2— ( K ^ I ^ O 

always. Therefore, when propagation vectors of two longitudinal primary waves intersect each other at right angles, 
sound-type radiations will not be generated. For the same condition, however, light-type radiations can be generated. 

The above theorem is valid regardless of whether the primary waves are unpolarized or polarized. Furthermore, 
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it is to be remembered that the relative positions of the scattering direction vector n r with plane (Ks,Kn) are neces
sary conditions to be considered in the generation of scattering the two types of radiations. 

I t is possible to see from the resonance scattering conditions that the resonance interaction of two longitudinal 
waves, propagating in the same direction, can lead to the appearance of scattered waves of sound and light types. 
Indeed, in this case, the resonance conditions ^^n

L,T=0 yield 

coe
2T2co8coJ 1- f 1 -J f 1 J 1 = 0, (49) 

/ z;2\ p 2 / coA1 '2/ coA1" 
«.M«.H-co» a-co. a)( 1 T2cosoJ 1 ( 1 ) 

\ C2/ Lc2 \ C0S
2/ \ C0n

2/ 
- 0 , (50) 

respectively. Scattered waves will radiate with combination frequencies, and their amplitudes will increase during 
propagation. 

In the case of waves propagating in the same direction with the same frequencies, Eq. (49) becomes meaningless, 
whereas Eq. (50) is satisfied. That is to say, two longitudinal primary waves propagating in the same direction with 
the same frequencies, when interacting, do not generate sound-type, but generate light-type emissions. 

An effective cross section da will be obtained by dividing the energy density of the scattered wave with the energy 
flux of the incoming waves. The energy flux for each incoming primary wave is 

1 V CO 

Sir o)e &e 

The differential cross sections for transverse and longitudinal scattered waves represent the average power of light 
and sound type scattered per-unit-solid angle: 

( — ) = 2 ( - ) ^ 2 | S ^ n ^ ) | 2 s i n 2 ^ . ^ ) , (51) 

/Ar \<"> F o W W - t o , 2 ) ( l - e ^ a - e * 2 ) - ^ 
( — ) - 2 v0r?\ S s T n ( ^ ) | 2 c o s 2 W ^ > 
\dtt/Ls^n (87r)yo)e:6 e8(nr- ks) + (v0n/vos)

2en(nr- kn) 

V0(o>s2-co2)r ( l - e , » ) - i ( l - € n 8 ) - i € f l : n 

~V0r?\ SsTniLL)\\Tsl:J
L^ | COS$^n

LL C O S ^ n " . ( 5 2 ) 
(8?r)2p(0V es (n r • ks) + (von/v0s)

2en (n r • kn) 

The conversion cross section (da/dQ)Ti>^n(LL) is important in interpretations of the theory of radio outbursts 
from the sun. The generation of plasma waves in the isotropic chromosphere and corona is of interest in connection 
with sporadic solar radio emission, only when these longitudinal waves can be efficiently transformed into trans
verse (radio) waves. In a homogeneous plasma (where the first-order perturbation equations are valid), this 
transformation occurs only through scattering of longitudinal waves from the plasma medium. However, in an 
inhomogeneous plasma, the efficiency of the transformation is increased, due to interactions between plasma 
waves. 

Case II. Transverse-Transverse Primary Waves 

In the formulations, Ts^n disappears because of vanishing rju and rjin. The radiation intensities have the following 
forms: 

FoW(cos
2-coe

2) 
/ (W)= ( l-6 s

2)(l-€n
2)€ s T n(^-z5n)2^2^2 Sfl=tt<

rr> 2 S U l t y ^ n ^ , (53) 
(87r)4p(0)c5 

(TT) -
Fo2(cosTcuJ2(cos

2~coe
2)/z;\2 

2(&r)y°V 5 W 
(l-«.*)(l-6»*)efl:»(^.0„)»I.0.,l'0»,|Sfl:.<rr>|*COS^fl:„<rr), (54) 

where 

KW.'-W.V'* 
<es=F(l-8.")fc (55) 
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These expressions assume that scattering resonance conditions are satisfied. Similar expressions to Eqs. (47) and 
(48) can be written to define angles of interactions ^L„TJTT) and ^T^TT) for a given set of plasma parameters. 

If the primary waves are plane polarized, and if they interact with polarization planes at right angles to each other 
( i v Vn—0), there will be no scattering radiation, even though resonance conditions are realized. This is the celebrated 
optical theorem of Fresnel-Arago, generalized for a plasma field. Indeed, Fresnel and Arago investigated the 
interference of polarized rays of light and found that two rays polarized at right angles to each other never interfere 
(from which they concluded that light vibrations must be transverse).14 

Now, assuming that linearly polarized primary waves are not at right angles to each other and are traveling in 
the same direction, the resonance conditions can be satisfied, and light- and sound-type emission are obtained by 
satisfying 

r / coe
2\1/2/ w.M/2-

coe
2=F2coscoJ l - ( l ) ( l — ) = 0 , (56) 

\ CO.2/ \ COnV J 

/V\* T V2( \ V2/ CoA1'2/ u A 1 " 
f-J«e2+(c0.2 + C0n2-C0.2) 1 - 4 =F2w^„Jl--f 1-—J f 1~~---J = 0, (57) 

respectively. It is furthermore to be noted, that when the two primary waves are propagating with the same frequencies 
(o)s==o)n), there will be no light-type emissions, since Eq. (56) becomes meaningless. However, for the same condition, 
a sound-type emission is possible. 

When the primary waves are interacting with propagation vectors at right angles to each other, there can be no 
light-type emission. 

The energy flux carried by an incoming primary wave is (C/167T)J>O2(IV /c)(co2—coe
2)1/2. The differential cross 

sections are written in a similar fashion to the previous case: 

/<fo\<rr> F0W(cos
2-co6

2) ( l - e s
2 ) ( l -€ n

2 )e s T r i (* s - vn)
2 

[ — ) = 2 - von21 S*=„<rr> |2 sin2 W r r ) , (58) 
\dti/T^n (87r)3p(0)c6 e s ( iv Ks) + en(von/vos)

2(nr- kn) 

(d<i\W Fo2(oJsTcon)2(cos
2-coe

2)/z;\3 ( l - e s
2 ) ( l - e n

2 ) e s ^ ( z V K)2 

( - ) = ( - ) ^ 2 | S W m | 2 c o s 2 W T r ) . (59) 
\dtt/L8Tn (ST)2P(0)V6 W es(nr- ks)+en(von/vQs)2(nr' kn) 

Special cases, such as interacting electromagnetic and transverse plasma waves, or two electromagnetic waves in a 
plasma medium, can be obtained from the above general expressions. 

Case III. Longitudinal-Transverse Primary Waves 

Assuming that s and n indices associate with longitudinal and transverse primary waves, respectively, the in
tensity expressions for radiating fields become: 

VoW(Us2-0>2)/V\-2 

7 (LD = 1 \ esTnvos
2von2\$sTn(LT)\2sm2dsTnwy (60) 

(87r)y<V W 

Fo2(cos=Fcon)
2(cos

2-co/) 
ILaTn

(LT) = esTnV0s
2V0n2\$sTn^\2 CO$2dsTn^ 

2 ( 8 T T ) 3 P ( ( V 

F0(cos
2—coe

2)f 
-esTnP0s2V0n2\ S*n(LT) | 2 COS^„<LT> C O S 0 8 W L ^ (61) 

where 
2(&r)V°V 

2_ 

Js^fn \2i)n+-~(ts-Pn)\ f— A [~ynT-(l-5s«)Ks , (62) 

T f l ^ ^ t a i V - r ^ (63) 

Again, one can substitute in Eqs. (47) and (48) the propagation vectors of the primary waves of this plane polarized 
to their relative positions. Light- and sound-type radiation will be generated, provided that other radiation condi-

*4 A Fresnel, Ann. Chim. Phys. 2, 1 (1816), 2396 Oeuvers, Vol 1, 39-4JJ9, 
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tions are realized. The primary waves propagate in the same direction; light- and sound-type radiations are 
possible if 

|cos
2zF2coscoJ 

-C \ C 0 / / \ (x)n/ 

/V\2 ( V2\ r V( C 0 e W C0e
2\ 

( - J ^ + ( l - - J c o n
2 T 2 c o s c o J 1 - - M J U — — J -o, 

(64) 

(65) 

are satisfied, respectively. In contrast to the previous case, primary waves propagating in the same direction with 
equal frequencies will interact and generate the two types of emissions. 

Repeating the same procedures as in the previous cases, differential cross sections for the longitudinal-transverse 
primary waves are written as follows: 

\dQJTn^n (87r)3p(0)c6 \C) (v/c)es(nr- Ks)+en(vQn/vos)
2(nr- kn) 

esT n fdo\<ir>_ Fo2(^Tco„)2(cos
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2)/fl\ 
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(8?r)2p(0 V \cJ (v/c)es(nr• ks) + en(von/v0s)
2 (n r • kn) 

Xvon2\SsTJLTy\\TsTn(
L^\cosOSTJLT) co$<t>s^

LT\ (67) 

V. SUMMARY AND DISCUSSIONS 

We have investigated light- and sound-type emissions 
from nonlinear fluctuations of an electron plasma, and 
related some of the results with the well-known results 
of classical electromagnetic and hydrodynamic theories 
in the limiting cases. The analysis is performed for 
second-order perturbations which contain radiations of 
quadrupole type as well as radiations of lower orders. 
I t should be kept in mind that the second-approxima
tion effects are small when compared with those of the 
first approximation. 

Mean energies emitted per unit time from the plasma 
field can be looked upon as radiating energies of light 
and sound waves. Therefore, intensity expressions refer 
only to the energies which actually escape as sound and 
light, and to their directional distributions. Due to the 
three different possible interactions, six types of intensity 
expressions are in order; three of these radiations are 
sound, and the other three are light-type radiations. 
We have briefly referred to transverse and longitudinal 
components of radiation intensities as light and sound. 

The intensity expressions of scattered light and sound 
are proportional to the same form 

amplitude terms vo2vor? are absorbed into the source 
term, to make it dimensionally equivalent to that of a 
stress term. 

In these six types of radiation expressions, the ve
locity for pure sound radiation is the adiabatic sound 
velocity v; foi a pure light radiation, it is the velocity 
of light c. Intermediate types of radiation will contain 
(v/c), (v/c)2, • • •, etc., as multipliers of the expression 
of the pure light radiation. Here, we use the term "pure" 
for cases where only one type of velocity enters into 
the expressions. 

Similar studies have been done in the field of 
acoustics, of quadrupole sound radiation. Case I I I is 
particularly interesting in this sense, since it yields the 
above-mentioned acoustic solutions as a special case. 
It is evident from Eq. (1) to (5), that when the elec 
tronic charge vanishes, the hydrodynamic field becomes 
uncoupled from Maxwell's field. If the electronic charge 
now goes to zero in the intensity expression of the 
scattered longitudinal wave, one obtains : 

F0
2cos

2(cos=Fcon)
2 

lL*nV 

(volume)2 (frequency)4 (source term)2 

(equilibrium density)1 (characteristic velocity)5 
(68) 

(87r)yo)»5 

7ow.V 

^ > | 2 s i n 2 W L r ) 

where frequency, source, and velocity parameters de
pend on the type of interacting primary waves. In the 
sound radiation field, a dipole-like radiation term enters 
into the expressions. In the general expression of (68), 

2(87r)V0V 

X c o s W L r ) c o s < W L r ) , (69) 

which can be compared with known acoustic results.15 

15 M. J. Lighthill, Proc. Roy. Soc. (London) A211, 564 (1952). 
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Indeed, the first term on the right-hand side of the last 
equation is comparable to acoustic quadrupole radia
tion, whereas the second term represents a dipole-like 
radiation. The main difference between this result and 
that of the earlier acoustic work is the appearance here 
of combination frequencies. 

We have formulated all possible radiations resulting 
from the three types of interactions. Some useful con
clusions can be drawn from these results : 

(1) I t is seen that in some cases, depending on the 
nature of interacting primary waves, sound and light 
emissions become prohibitive if they interact at right 
angles to each other (the interaction angle is to be 
understood as the angle between the propagation vec
tors of the primary waves). 

(a) When (both) primary waves are longitudinal, 
no sound-type radiation is possible but a light-type 
emission will be possible. This theorem is general and 
is true for polarized, unpolarized primary waves. 

(b) If the two transverse primary plasma waves are 
interacting at right angles to each other, the light-type 
emission is prohibited but sound emission is possible. 
Obviously this excludes the case wherein the plane 
polarized primary waves interact with the polarization 
planes at right angles to each other. 

(c) When primary waves are longitudinal and trans
verse both sound- and light-type emissions are possible. 

Furthermore, one can say that the above statements 
are true for primary waves having different or equal 
frequencies. 

(2) From general expressions of resonance scattering 
equations (47), (48), we are able to determine radiation 
conditions for the primary waves traveling on the same 
direction. 

(a) When both primary waves are longitudinal, 
sound- and light-type emissions are possible. If they 
have the same frequencies, sound emission is impossible. 

(b) If primary waves are transverse waves, both 
sound- and light-type emissions are possible. When 
they have the same frequencies there is no light-type 
emission, and a sound-type emission is possible (again 
for the interaction of plane polarized primary waves 

with polarization planes at right angles, the two types 
of radiations are impossible). 

(c) If primary waves are longitudinal and transverse, 
both sound- and light-type emissions are possible for 
different and equal frequencies. 

(3) Generally, if primary waves are interacting with 
an arbitrary angle (other than 0° and 90°) both sound-
and light-type emissions are possible for different and 
equal frequencies. 

(4) Limiting cases to the general results, such as 
interacting sound waves, interacting sound and electro
magnetic waves, or interacting electromagnetic-electro
magnetic waves in a plasma medium can be obtained 
simply by convei ting primary plasma waves into ordi
nary electromagnetic and sound waves. This can be 
done easily by equating Langmuir electron frequency 
o)e to zero in the primary wave numbers KS, KH. 

(5) We find in the second-order perturbations that 
oscillations with frequencies oo^Un enter into the 
radiation expressions, co^ajn type combination fre
quencies include self-interaction frequencies (double 
frequencies) 2coi, 2co2 as well as interaction frequencies 
coi —C02, coi+co2. In higher approximations (for instance 
n=3) combination frequencies will appear as the sums 
and differences of more than two initial frequencies 3coi, 
3co2, 2coi+co2, «i—2co2, C02—2coi, coi+2co2. However, the 
combination frequencies will include some terms which 
coincide with the original frequencies coi = ooi+co2—co2, 
co2=oj2+co1—coi. Carrying this to higher approximations, 
combination frequencies for an nth order will be in the 
form of 

co<n) = foi=FZco2, (70) 

where k and / are integral numbers, n — k+L Another 
important aspect of the problem can be developed by 
investigating the interaction of an arbitrary number of 
primary waves. That is to say, Eq. (25) must be re
considered in the form 

E ( 1 ) - L v i cos ( a ; i / -K r r ) , (71) 

which includes n arbitrary interacting primary waves. 


